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Some techniques for charge-density analysis proposed by R. F. Stewart have been compared by application 
to s-triazine, with X-ray data and neutron structural parameters. There is strong correlation between popu- 
lation coefficients for density basis functions which overlap heavily with each other, and in extreme cases 
individual populations are indeterminate. Multipole expansions centred on the nuclei are better defined than 
sets of orbital products which include two-centre terms. Trigonal octupole functions centred on the carbon 
and nitrogen nuclei give a marked improvement in the description of the scattering experiment provided the 
exponents which determine the radial variation of the density functions are optimized. The optimum exponent 
varies with the length of the multipole expansion. New algorithms developed for these studies give improved 
computational efficiency. 

Introduction 

The analysis of the charge density in crystals via 
diffraction experiments has now been investigated by 
many workers. Some methods involve a full theoretical 
calculation of the density in the cell, but this is feasible 
only for small structures. For larger systems the first 
stage is the separation, based on the convolution 
approximation (Coulson & Thomas, 1971), of the dis- 
tribution function resulting from the motion of the 
electrons relative to the nuclei from that produced by 
the nuclear motion itself. The electron density is then 
represented as a sum of local 'one-centre' distributions 
centred on the nuclei, with the possible addition of 'two- 
centre' terms centred at other positions. Each of the 
one-centre terms is the convolution of the nuclear dis- 
tribution function with the electron distribution relative 
to the nucleus. It is well known that the structure factor 
F(S) for the X-ray Bragg experiment is the Fourier 
transform of the electron density. Since the Fourier 
transform of the convolution of two functions is the 
product of the transforms for the separate functions we 
may write 

N 

F ( S ) =  ~ f nT ,  exp(-iS.r~) (1) 
r / = l  

where r,, T N and f ,  are the equilibrium position of the 
nth nucleus, the transform of the nuclear smearing 
function with r n as origin (temperature factor), and the 
transform of the electron distribution with the nucleus 
as origin (form factor), respectively. S is a reciprocal- 
lattice vector, with magnitude S. It is assumed that the 
separation into form and temperature factors is also 
valid for the two-centre terms. The analysis of charge 
density is equivalent to the evaluation of the parameters 
which determine the form factors. 

Orbital products 

Stewart (1969) proposed that the electron density be 
expressed as a sum of orbital products 

p(r)= Z Z Puo~(r)zv(r)  (2) 
v 

where the Xu, Xv are atomic orbitals and the Pu~ are 
population coefficients. Analytical expressions for the 
Fourier transforms of one-centre Slater-type orbital 
(STO) products and one and two-centre Gaussian-type 
orbital (GTO) products are given by Stewart (1969). 

In its simplest form applicable to molecular crystals 
containing first row atoms the density function consists 
of invariant ( l s )  2 c o r e s  plus a valence density con- 
structed from a minimal set of 2s and 2p orbitals, with 
ls orbitals for hydrogen. These generate a set of one 
and two-centre products, but this set is not minimal in 
the same sense as the parent orbitals. Thus a (2p) 2 
product generates a function into which an sd product 
with similar radial dependence projects with high 
efficiency. 

The analysis of electron-density distributions in terms 
of orbital products appears to provide an experimental 
method for determining the diagonal elements of a first- 
order density matrix. Coppens, Csonka & Willoughby 
(1970) have applied this method to a range of problems. 
Nevertheless there are serious difficulties with this 
approach. The Fourier transforms for products of 
different orbitals may resemble one another within the 
range of the accessible data (Stewart, 1972). Their 
population coefficients, which are strongly correlated, 
are correspondingly ill-defined. 

Bond-directed scattering factors 

At the one-centre level, determination of a full set of 
populations for (s) 2, (px) 2, (py)2, (pz)2, sp~, spy, Spz, 
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PyPz, P~Px, and PxPy products is impossible because 
of the linear dependence of the (s) 2 and three ~)2 
functions. The ambiguity may be resolved by applying 
suitable constraints on the populations. O'Connor & 
Maslen (1974) have analysed the electron density in 
molecular crystals in terms of bond-directed scattering 
factors. In evaluating these the populations of the defor- 
mation terms in the distribution function are constrained 
to be consistent with nearest neighbour geometry and 
bond hybridization. A normalized density function of 
the form (Zs + /~Zp)2/( 1 + / t2) is associated with each 
chemical bond, including n bonds./t is 1, x/2, x/3 and 

for approximate sp, sp 2, sp a hybridization and pure 
n bonding respectively. The bond-directed scattering 
factors are intended as a representation of the first- 
order departure from spherical symmetry due to 
chemical bonding. It is assumed that the first order 
effect can be described simply in terms of changes in 
population, without altering the radial dependence of 
the local distribution functions. The method cannot give 
an adequate description of the electron density near the 
midpoints of chemical bonds, which produce the com- 
paratively sharp features observed in X-ray difference 
syntheses, because the one-centre density functions for 
the hybridized orbitals are too slowly varying for that 
purpose. 

Two-centre scattering 

The problem of similarity of density functions is 
acute for two-centre terms. For atoms A and B with p 
orbitals along the internuclear vector the products 
2s A 2s8, 2s A 2pB, 2pA2s n and 2pA 2p8 are virtually 
identical. Stewart (1973a) has examined the transforms 
of these functions and suggested their replacement with 
a two-centre scattering function 

f =  Pbond exp(-AS2) + P~ond $2 exp(-ASz) + . . . (3)  

where 

A =a~/(a A +aB). 

a 0 is the Bohr radius and a is the exponent* of a 1 GTO 
parent orbital from which the two-centre term is con- 
structed. The second term is isotropic but vanishes at 
the origin, and the higher-order terms are anisotropic 
with angle-dependent components which integrate to 
zero.  

A number of refinements including two-centre terms 
have been described by Allen-Williams, Delaney, 
Furina, Maslen, O'Connor, Varghese & Yung (1975). 
The scalar populations for these terms are invariably 
close to zero, indicating that components of the density 
which do not project efficiently into neighbouring one- 
centre terms are not well described by a slowly varying 
scalar two-centre term. 

* In this paper distances generally are given in/~ (10 -1° m) but 
orbital exponents are in atomic units to conform with theoretical 
calculations. 

Multipole expansions 

Difference densities for molecular crystals contain 
features which cannot be represented by one-centre 
products of s and p functions. If d orbitals are invoked 
without further restriction a large number of similar 
density functions are introduced. Stewart (1973a,b)has 
proposed an alternative formulation which reduces this 
redundancy. Each local distribution is written as a 
multipole expansion 

p(r) m p(r)scala r + P(OcUpole -4- P(Oquaarupole +''" (4) 

The low-order terms relate directly to orbital 
products. A scalar term is obtained from an (s) 2 
product, and the three independent dipoles are equiva- 
lent to one-centre SPx, spy and spz terms. The set of 
products between p orbitals may be recast as a scalar 
plus five independent quadrupoles. The pd products 
give rise to three independent dipoles and seven octu- 
poles, and so on. 

In our analysis the scalar term for the first-row 
atoms is taken as the sum of an invariant (ls) 2 core 
plus a scalar valence-density term. This is regarded as a 
'valence density' analysis. If the scalar term was 
written as the sum of the density of the isolated atom 
and another monopole term then it would become a 
'deformation density' analysis. 

This approach resembles that of Dawson (1967), 
and is a further development beyond the extension to 
low site symmetry by Kurki-Suonio (1968). However 
STO (exponential) radial functions are preferred to 
Gaussian functions, and the orders of the functions are 
chosen so that the high-order gradients of the electric 
field remain finite. The deformation-density methods of 
Hirshfeld (1971) and of Harel & Hirshfeld (1975) 
are similar except that their combinations of orbital 
products are not in traceless form. 

Multipole density functions on the same centre are 
mutually orthogonal if they have different angular 
dependence. Functions on different centres are not 
orthogonal in general, but the correlation coefficients 
for multipoles on different nuclei are smaller than the 
high values which may occur for one and two-centre 
terms. Correlation between multipole populations is 
weak for expansions of limited length. Longer expan- 
sions on each centre give a representation which is 
essentially over-complete. 

The multipole expansion method can be expressed 
in a form which is computationally rather efficient. 
Major calculations on form factors are carried out only 
once. The evaluation of structure factors and the 
formation of the least-squares normal equations involve 
simple multiplications by populations and products of 
Miller indices. A least-squares refinement with neutron 
structural parameters and a residual based on F may be 
expressed in linear form, so that iteration is not 
required. Details are given in the Appendix. It should 
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be noted that a separate scale factor for the intensity 
data is not included directly as a variable parameter. If 
the experiment were ideal, if the actual valence density 
projected exactly into the simple functions used here, 
and if there was no core deformation, the core popu- 
lations would be exactly two electrons. The scalar 
valence populations would then sum to electrical 
neutrality without rescaling. This is not the case in 
practice and the following rescaling procedure is based 
on the assumptions of no core deformation and 
accurate structural parameters. The core populations 
are constrained to be equal in the analysis. The scale- 
factor for the data is taken to be that which rescales the 
populations to electrical neutrality. An alternative 
scale-factor is that which results in core populations of 
exactly two electrons. The projection parameter, 
defined as the ratio of these scale factors, gives a 
measure of the extent to which the actual valence 
density projects into the functions used. 

For the first-row atoms, the difference between the 
core population and 2.0 is taken to represent a failure 
of the model to represent the valence density accurately 
and is added to the scalar valence populations. The 
latter then sum to the total number of valence electrons 
for the isolated atoms. 

Exponent refinement 
The exponents for density functions used in charge- 

density studies have usually been taken from theoretical 

calculations based on minimization of energies. Hehre, 
Stewart & Pople (1969) have tabulated a set of 
standard molecular values for Slater-type orbitals. 
These are mean values obtained from a wide range of 
theoretical calculations. 

In a charge-density analysis Stewart (1973c) has 
shown that the optimum exponent varies with the length 
of the multipole expansion. Optimization of the 
exponents gives deformation functions which are much 
better defined than those obtained with standard 

molecular exponents. 
An exact calculation of the derivatives for least- 

squares refinement of exponents involves evaluation of 
an expression similar to those for the form factors in 
forming the normal equations. This is prohibitive for a 
complex structure, and an efficient approximation 
procedure has been devised. A description of this 
method is included in the Appendix. 

s-Triazine 

s-Triazine, which has the molecular formula shown in 
Fig_. 1, lies on a 32 site in a structure with space group 
R 3 c. Each atom in the structure lies on a twofold axis, 
whereas it has mm2 symmetry in the free molecule. 
X-ray and neutron data have been collected by 
Coppens (1967), and a charge-density analysis at the 
scalar population level has been reported by Stewart 
(1970). 
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Fig. 1. The structure of s-triazine. (a) molecular dimensions [Coppens's (1967) neutron parameters], and crystal packing; projections down 
(b) the c axis and (c) the [ 110] direction. 
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The X-ray data are not unusually accurate or exten- 
sive. There is no chemical redundancy within the 
asymmetric unit, and because of its small size there are 
relatively few data close to the origin of reciprocal 
space, where information on the valence distribution is 
concentrated. Nevertheless, the symmetry of the 
structure restricts the number of multipoles which are 
possible. The small size of the structure limits the com- 
putational work involved. These are considerable 
advantages for the comparison of different methods of 
analysis. The validity of a comparative study is largely 
independent of errors in the intensity data, which will 
have similar effects in all the analyses. 

Three series of refinements were carried out, based 
on bond-directed scattering factors, on one and two- 
centre density functions and on multipole expansions. 
Atomic self-consistent field (SCF) cores were used 
throughout. These were taken from Clementi (1965). 
The valence shells were constructed from Slater-type 
orbitals unless otherwise stated. 

Bond-directed scattering-factor refinements 

The results of refinements with bond-directed 
scattering factors are shown in Table 1. The residual 
minimized was based on IFI z. The core populations for 
carbon and nitrogen were fixed at 2.0 e, and a scale 
factor was included as a variable parameter in the 
analysis. Standard molecular exponents were used for 
all density functions. For refinement (a) the structural 
parameters were fixed at the neutron values. 

Because of the limited number of parameters required 
for this type of representation of the valence electron 
density it is feasible to explore the effect of simul- 
taneously refining the structural parameters along 
with the population coefficients. For refinement (b) the 
structural parameters were included as variables. The 
coordinates of the carbon and nitrogen atoms were 
essentially unchanged in this refinement, but the 
hydrogen atom was displaced by 0-13 A. Its population 
has increased by 0.08 e. 

There is a marked increase in the standard deviations 
for the populations, reflecting the difficulty of decon- 
voluting charge movements due to bonding from 
thermal motion when the amount of diffraction data is 
limited. The temperature-factor coefficients increased 
slightly during the refinement. This has the effect of 
broadening the sampling functions by amounts which 
are relatively larger for the carbon and nitrogen cores. 
The core-density functions have absorbed some of the 
valence density, and the projection coefficient has 
fallen. A similar result was observed for oxalic acid 
dihydrate by Allen-Williams et al. (1975). The changes 
in the rescaled populations are not significant in terms 
of the standard deviations, supporting the prediction of 
Stewart (1970) that gross populations will be insensitive 
to residual errors in the thermal parameters. Never- 
theless the systematic nature of these changes is clear 
evidence for deficiencies in the electron-density model. 
The variation in the populations of the components is 
considerably larger than the differences between gross 
populations. Analyses of shapes of charge densities are 
thus more sensitive to thermal-parameter errors than 
measurements of 'atomic' charge. 

Effect of  two-centre terms 

The results of refinements including two-centre terms 
are given in Table 2. In refinement (a) Pbond terms have 
been included with exponents equivalent to the standard 
molecular values, while in refinement (b) both Pbo,d and 
P~,ond terms have been included. 

The gross population of the nitrogen varies a little 
in these refinements, but the carbon population shows 
stronger inverse correlation with the hydrogen and 
Pbond terms.  The latter have small negative populations. 
This agrees with similar analyses (Allen-Williams et al., 
1975), but contrasts with the results of theoretical 

Table 2. Analyses including two-centre terms 

Table 1. Analysis with bond-directed scattering factors 

Population coefficients in electrons, based on (a) neutron param- 
eters (b) variable parameters, eval is the total valence population. 
Pr, P~ and P~ are directed along the C - N  bonds, axially and 
normal to the ring respectively. Standard deviations in parentheses. 

Atom Pval Pr 

(a) C 4.11 (25) 0.98 (11) 
(b) 4-06 (78) I. 16 (31) 

(a) N 5-24 (22) 1.20 (6) 
(b) 5.21 (60) 1-19 (15) 

(a) H 0.66 (11) 
(b) 0.74 (20) 
(a) R(F) 0.059 R(F 2) 0.042 Rw(r 2) 
(b) 0.053 0.032 

Pa P,, 
0.59 (12) 1.56 (13) 
0.37 (51) 1.36 (56) 

1.07 (11) 1.75 (14) 
1.00(37) 1.81 (75) 

Population coefficients, in electrons, including (a) single-term 
two-centre function (b) two-term two-centre function. 

Centre Pval 

(a) C 5-03 (28) 
(b) 5.41 (28) 

(a) N 5.45 (25) 
(b) 5.63 (31) 

(a) H 0.45 (13) 
(b) 0.55 (15) 

(a) N - C  (b) 

(a) C - H  (b) 

0.044 Proj. 1.16 (a) R(F) 0.072 R(F z) 0.060 
0.036 0.89 (b) 0.074 0.060 

P~o,a P~,o.d 

-0 .50 (20) 
-0.91 (32) 5.93 (392) 

-0 .22 (8) 
-0 .34  (18) 1.26 (154) 

Rw(F 2) 0.056 Proj. 1.12 
0-055 1.26 
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Table 3. Analysis  with s tandard molecular exponents 

(a) Scalars only (b) mm2 site symmetry, (c) 2 site symmetry. 
The valence populations are scaled as in the text. Proj. is the projection parameter. 

Atom Pval Dl 
(a) 3.87 (I0) 
(b) C 3.90 (22) -0.01 (9) 
(c) 3.94 (23) -0.03 (9) 

(a) 5.26 (9) 
(b) N 5.28 (23) -0.03 (10) 
(e) 5.24 (25) -0.05 (9) 

(a) 0.86 (4) 
(b) H 0.83 (9) 
(c) O. 82 (9) 

(a) R(F) 0.057 nw(F) 
(b) 0.053 
(c) 0.052 

QI Q4 Q5 O, 0 4 0 5 

0.01 (10) -0.01 (12) 0.15 (10) -0.04 (8) 
0.03 (8) -0.07 (16) 0.00 (12) 0.14 (10) -0.04 (17) 0.17 (9) 

-0.13 (9) -0.01 (1 I) -0.08 (11) 
-0.14 (7) 0.08 (15) -0.01 (10) -0.10 (11) 

0.048 GoF 1.45 (11) Proj. 1.10 
0.044 1.35 (10) 1.08 
0.043 1.34 (10) 1.08 

-0.05 (8) 
0.14(19) 0.14(9) 

calculations, where the two-centre terms for nearest 
neighbours have populations of about 0.5 e. It is clear 
that the theoretical and experimental quantities are not 
directly comparable. 

A further two-centre refinement was carried out in 
f which Pbond terms alone were included and their ex- 

ponents were refined. The exponents obtained were 
effectively infinite. This is a significant result, since it 
corresponds to density functions which are sharply 
localized at the bond centres. This is consistent with 
the observation by Larson, Cromer & Ryan (1973) 
that residual two-centre scattering, i.e. that which is not 
accounted for adequately by one-centre terms, is a 
high-Bragg-angle phenomenon. 

Multipole refinements 

Because of the site symmetry (2) in the structure only 
one non-zero dipole component, three independent 
quadrupoles and three octupoles are permitted. The 
atoms in the free triazine molecule have higher sym- 
metry (mm2) than that in the crystal (2), corresponding 
to an additional mirror lying in the plane of the 
molecule. This might be expected to persist approxi- 
mately in the crystal. If valid, this reduces the number 
of independent quadrupoles and octupoles to two per 
atom. If, in addition, the density functions at the 
carbon and nitrogen atoms have trigonal (6m2) 
symmetry there is only one quadrupole and one 
octupole term per atom. 

The atomic-coordinate system chosen reflects the 
approximate 6m2 symmetry of the carbon and nitrogen 
sites. The x axis is chosen in the direction of the CH 
bond and the z axis is perpendicular to the molecular 
plane. (This choice has x parallel to a, and z parallel to 
e, with y in the ab plane.) The 6m2 allowed terms are 
then the trigonal octupole, 01, and the cylindrically 
symmetric quadrupole, Qs. Relaxation to m m 2  site 
symmetry adds the dipole, D~, the quadrupole, Q~, and 

the octupole O 5. A site symmetry of 2 allows the 
additional terms Q4 and 04. 

These density functions have been normalized as in 
paper II (Price & Maslen, 1978). The populations are 
the electron contents of the positive parts of the defor- 
mation functions. 

In these refinements neutron structural parameters 
were used throughout and the residual minimized was 
based on IFI. 

S tandard  molecular exponents 

Table 3 lists the results of a series of refinements with 
multipole deformation functions and standard molecular 
exponents. The levels of approximation were (a) scalars 
only, (b) multipoles of mm2 symmetry for carbon and 
nitrogen and (c) multipoles of 2 symmetry for carbon 
and nitrogen. 

The correlation between these charge-density terms 
is much less than between those of the previous models. 
The atomic-valence populations, Pray, are consequently 
much better defined. However, the fit of the model to 
the data is judged by the GoF* index, and this de- 
creases only slowly as the level of the multipole 
expansion increases. This is in agreement with Stewart's 
(1973c) diamond valence-density analysis. 

refinement 

In a further series of refinements the exponents for 
the scalar terms, which make a dominant contribution 
to the valence density, were refined with the approxi- 
mation methods described in the Appendix. The results, 

*GoF = o)i(A Fi)V(n - p 
i=I 

where AF i = F, obs - Fi,ca~c, the difference between the observed and 
calculated structure factor, ¢,o i is the inverse of the variance of 
F,..obs, n is the number of observations and p is the number of 
parameters. It can be shown that E[(GoF) 21 = 1, where E[ ] is the 
expectation value. 
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Table 4. Analysis with optimized exponents 

(a) Scalars only, (b) 6rn2 site symmetry, (c) rnm2 site symmetry. 
The valence populations are scaled as in the text. Proj. is the projection parameter. 

Atom SM~ ~ Pval D, 

(a) 1.67 (3) 3.70 (10) 
(b) C 1.72 1.52 (5) 3.81 (18) 
(c) 1.57 (3) 4.24 (17) 0.08 (12) 

(a) 1.83 (3) 5.41 (10) 
(b) N 1-95 1.79 (5) 5.24 (16) 
(c) 1.83 (3) 5.20 (17) --0-05 (12) 

(a) 1.29 (3) 0.89 (12) 
(b) H 1.24 1.01 (4) 0.95 (14) -0.09 (5) 
(c) 1.62 (4) 0.56 (18) 0.08 (7) 

(a) R(F) 0.054 Rw(F) 0.046 GoF 1-43 (11) 
(b) 0.048 0.038 1.22 (9) 
(c) 0.044 0.035 1.15 (9) 

Qi Q5 ol 05 

-0 .02  (5) o. 11 (10) 
-0 .04  (24) -0 .01 (]4) 0.34 (26) 

0-I0 (5) -0-33 (9) 
-0.04 (18) 0-07 (8) -0-15 (25) 

Proj. 1.09 
1-07 
1.04 

-0.25 (17) 

-0 .13 (18) 

for (a) scalars only, (b) multipoles of 6m2 symmetry for 
carbon and nitrogen, and the dipole D~ for hydrogen, 
and (c) mm2 symmetry for carbon and nitrogen, and 
the dipole D~ for hydrogen, are shown in Table 4. 

The GoF  index decreases substantially with the 
introduction of those terms satisfying the approximate 
bonding symmetry and does not decrease significantly 
with the addition of terms allowed by the actual site 
symmetry.  The final GoF  value is a little greater than 
unity. Models (b) and (c) of this analysis are therefore 
better descriptions of the data than the models with 
standard molecular exponents. 

The correlation between the parameter has, however, 

increased. This is partly due to a relatively small data  
set and thus the number of parameters approaches the 
number of data  points in the low-angle region where 
these valence-density functions have their maxima. It 
results in less well determined parameters.  As the 
number of terms is increased the correlation between 
parameters results in the valence (monopole) popu- 
lations varying substantially. 

The exponents are well-defined in these analyses. 
The values depend on the level of the multipole 
expansion. At the scalars-only level the exponents are 
close to, but a little below the standard molecular 
values. At the 6m2 level they are closer to the isolated 
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Fig. 2. The effect of exponent refinement and of inclusion of various multipoles in the model on the fit to the data. The model is charac- 

terized by which parameters are optimized. S refers to 'scalars' (a core and three valence populations), ~ to the valence exponent, while 
the populations of the other multipoles are coded as defined in the text. The atom on which the density functions were placed has its label 
[(H) or (CN)I following the multipole labels. Solid line: results with optimized exponents, dashed line: results with standard molecular 
exponents. 
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atom values. This behaviour is very similar to that of 
the carbon-atom exponent in the analysis of the valence 
density of diamond (Stewart, 1973c). 

The variation of the GoF index with the level of 
expansion for a number of analyses with standard 
molecular exponents and optimized exponents is shown 
in Fig. 2. It shows the importance of exponent refine- 
ment and of the bond-directed octupole term, O~, on 
the heavy atoms, which reduce the GoF index by more 
than three standard deviations. 

The preferred model 
We seek a description of the 'at rest' molecular 

electron density as a superposition of atom-like frag- 
ments and possibly 'bonding charges'. The model is 
required to be sufficiently flexible so that data of 
arbitrary accuracy can be adequately described. 
However, if the parameters are to represent local 
properties then the correlation between them must be 
kept as small as possible. 

Of the models discussed in this paper, the multipole 
density function model with refined exponents and 
multipoles satisfying the approximate bonding sym- 
metry (analysis b of Table 4) is clearly superior when 
judged in these terms. In this analysis four of the five 
deformation functions have populations greater than 
their e.s.d. The signs of the octupole functions on the 
carbon and nitrogen atoms are consistent with a re- 
distribution of electrons (0.11 and 0.33 respectively) 
into the bonding directions. Similarly, the hydrogen 
dipole redistributes 0.09 e from the anti-bonding 
direction into the bonding direction. The nitrogen 
quadrupole takes 0.10 e from the plane of the ring 
and redistributes them above and below the plane. 

The valence populations for this model result in atom 
charges close to 'gross charges' from the STO-3G 
(standard molecular) calculation of Stewart (1970). 
The agreement is not as good with the INDO results 
(Stewart, 1970) and is poor with the results from a more 
accurate calculation (Alml6f, Roos, Wahlgren & 
Johansen, 1973) with a more extensive basis set. This 
emphasizes the unreliability of MuUiken gross atomic 
charges (Flisz/u', Kean & Macaulay, 1974; Coppens, 
1975). 

than those of representations where two-centre terms 
are included. Individual populations may become ill- 
defined, however, if the basis set of density functions is 
unduly large. 

A comparison with the results of theoretical calcu- 
lations will necessitate the projection of theoretical 
densities into similar pseudo-atom models. 
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APPENDIX 

(i) Computation of the multipole expansion 
In the multipole approach to charge densities the 

angle dependences of the distributions are commonly 
given in terms of surface harmonics PT'(O, tp) eim% which 
transform as surface harmonics. Alternatively, how- 
ever, the transforms may be written in terms of linear 
coordinates as 

f =  Z L Isl, 
k = O  

3 3 

x Y  Y . . .  
i I = 1 i 2 = i I 

3 ] 
~. Pqi,...i, hi, hi, .''hi, (A 1) 

i , = i , -  1 

where h 1, h2, h 3 are Miller indices, the f,,v.k are the 
radial parts of the transforms defined by Stewart (1969) 
and the Pi, i2. • • i, are population coefficients. 

For quadrupoles and higher-order multipoles the 
number of terms in this expansion exceeds the number 
of independent coefficients. The quadrupole, with k = 2, 
has six coefficients of which five are independent. This 
corresponds to the expression of the quadrupole 
moment as a second-order tensor in a Cartesian frame 
q, which must be traceless. Alternatively we may write 
the quadrupole moment in a product space as 

Conclusion 

These results indicate that diffraction data allow the 
description of the at-rest molecular electron density 
as a superposition of 'pseudo-atoms' or deformed 
atoms. The populations of the major terms can be 
determined. The width parameter (exponent) of the 
scalar valence density term can also be determined. 
A multipole expansion provides a representation of the 
density which is more efficient from the point of view 
of charge-density analysis than an orbital-product 
formulation. Its populations are much better defined 

Tqq( 2' 
- i  0 0 3 0 - 3  0 0 0 

0 - 3  0 0 
0 0 0 --3 
0 0 1 0 

=TQVh (:) 

i) / 0 iqlq2\ 
I qlq3 I 

- \q2q3] 
\ q 3 /  

(A2) 

where the Miller-index space h is related to that for the 
q by the linear transformation 

q = V h  
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and 

VII VII (VII VI2 -k- VI2 VII ) (Vii VI3 + VI3 VII) VI 2 VI 2 
v,, v:, (v,, v:: + v,: v:,) (v,, v:~ + v,~ v:,) v,~ v:: 

qt2, = V,, V3I (VII V32 -4- V,2 V31 ) (Vii V33 -4- V,3 V31 ) V,2 V32 
V2, V21 (V21V22 + V22V21) (V21 V23 + V23 V21) V22V22 
v:, v3, (v:, v3, + v:: v3,) (v:, v3~ + v~3 v3,) v:: v~: 
V3, V31 (V31 V32 + V32 V31) (V3i V33 + V33 V31) V32V32 

(V~2 V13 + V.  V~z) V u V~3 \ 
(v,: v:3 + v~3 %:) v13 v : , \  
(V,2 V33 4- 1713 V22 ) V,3 V33 :J (v:: v:~ + v:~ v::) v:~ v:~ h(2) - ~fl, l(2). 

Thus, the five independent quadrupole coefficients are 
linear functions of the P~,i2- Octupoles and higher-order 
multipoles may be dealt with in a similar manner• 

The form of (A2) is particularly interesting because 
of its similarity to the argument of the exponential 
in the cumulant expansion of the transform of the 
nuclear distribution function (Johnson, 1970), 

C = T exp ( - iS .  r,) 

=exp  ik Y, Z . . .  Z C,, i~ . . . i~h i ,h i~ . . .h t~  • 
k=l it=l i2=il ik=ik-I 

(,43) 

k = I, 2, 3 and 4 defines the geometrical, dispersion, 
skewness and kurtosis terms respectively. 

In a statistical model for the thermal motion the 
coefficients C in (A 3) are treated as independent, but 
for a mechanistic model it is always possible to invoke 
the same expression, with linear constraints between the 
C's (see, for example, the treatment of librational 
motion by Pawley & Willis, 1970). 

(ii) Determination o f  the parameters 

We wish to determine the value of the P's, the C's 
if these are unknown and any other unknown para- 
meters which affect the intensities in the diffraction 
experiment. 

Adopting the method of least squares, we seek to 
determine the values of the parameters L~, L2, . . .  Li, 
• . .  Lt which minimize a residual function 

i.e. we require that 

R = Z o~e2, (A 4)  
obs 

OR 
= o  (As) 

cOL~ 

for all i, with the second derivatives positive• e is the 
difference between the observed and theoretical values 
for an observation and the weighting factor 09 is the 
reciprocal of the variance for the observation• 

In general, the observed quantity is a non-linear 
function of the parameters, and it is common practice 
to linearize the problem with a Taylor-series expansion 
for the observational equations. Following Stewart 

(1973a) we prefer the following alternative procedure.* 
We note that 

OR COe 
-- 2 Z a ~ e ~  (A6) 

cO L i cOL i obs 
and 

cO2 R cOe cOe cOz e 
- 2  Z o 9 ~ ~  + e  .... (A7) 

cOL i cOLj o~s cOL i cOLj cOL i cOLj " 

If e is a linear function of the parameters the second- 
derivative term vanishes and there is a unique solution 
to the problem. For the non-linear case there may be 
several minima, and we seek the minimum near a set of 
trial parameters L'I, L~ . . . .  L'i . . . .  L). By a Taylor- 
series expansion 

COR COR 

c0L i cOL" 

where 

02R 
+ ~ - -  t~L./+ . . . .  (A8) 

j-_, aL" aL~ 

6Lj=Lj--L~, 

and we obtain the normal equations by truncating this 
series at the second term thus: 

I (COe CO~ CO2e ) 
Y X ~ .  - - + e ~  6L i 
ob~ ,--, ~ aL'j aL,aL~ 

CO8 
= -  Z o g e - -  (A9) 

ot, s c°L~ 

which differ from the equations commonly employed 
by the inclusion of the second-derivative terms. Our 
form has two advantages• The use of the least-squares 
equations in this form may speed convergence in the 
later rounds of refinement, but it can actually hinder 
progress in early cycles in some cases. Nevertheless, it 
is worth quoting our experience that the use of 
acceleration factors on the shifts to speed convergence 
is usually unnecessary when the second derivatives are 
included• The principal advantage, however, is that the 
covariance matrix obtained by inverting this form of 
the normal-equations matrix reflects the true curvature 
of the error surface at the point of convergence. 

* In fact, the methods are equivalent if the Taylor-series ex- 
pansion of the observational equations is done correctly. The usual 
practice is to truncate the Taylor series at the first term. Since the 
residual (,44) involves the square of  the function its second-order 
term (the curvature matrix) depends on the function's zero-order, 
first-order and second-order terms. This results in the modified 
normal equations of (A 9). 



202 ELECTRON-DENSITY STUDIES. IV 

While the optimum choice of t in (A4) requires 
further discussion its derivatives are always simply 
related to those of the calculated structure factor F~. 
For a population coefficient belonging to the nth 
scattering unit 

OF~ 

OPi,i2... ik 

and for a cumulant 

_ ik fuv.k 
T. hi, hi~..,  hi~ (A lO) 

OFc - ikfn hi, hi2.. ,  hi~ T n. (A 11) 
OCi,i2. . . ik 

Second-order derivatives involving different centres 
vanish uniquely, as do those for different populations 
on the same centre. The non-zero second derivatives are 

O2 Fc 

OPi,i,... # OCia2... ik 

= iJ+kJ"~'---Jhi, hi2. h#hi, hi2 hi~T n (A12) 
fslj . . . . .  

for a population and a cumulant, and 

02Fc 

Gill2. . .  ij Cili2.. .  ik 

= iJ+kf,,hi, hi2. . ,  hijhi, hi2.. ,  hi~T, (A13) 

for two cumulant coefficients for the nth scattering 
unit. 

It should be noted that the k = 0 term in the 
cumulant expansion, equivalent to a scale factor, is 
explicitly omitted in this analysis. The population 
coefficients are determined to within a scale factor 
which may be defined by the condition of electrical 
neutrality, the theoretical value of the core contribution 
or other suitable constraint. This eliminates the problem 
of correlation between the scale and the population 
parameters during least-squares refinement. When the 
cumulant terms are known, from a neutron-diffraction 
experiment, it has the advantage that the least squares 
is linear and the need for iterative refinement is elimi- 
nated. This fact is perhaps the sole justification for 
refinements based on IFI, rather than IFI z. The latter, 
on the other hand, permits an unbiased treatment of 
the weak reflections, for which statistical fluctuations 
may produce a background count in excess of the peak 
value. The evaluation of second-derivative terms for 
refinement on I FI 2 is straightforward since 

cOEIFc 12 OF c OF* OF* OF c 

OL~OLj OL i OLj OLj OLj 

Fe 02 F* F* 02F~ 
+ ~ + ~ (A 14) 

OL i Lj OL i Lj  

These procedures are readily extended to incorporate 
analytical corrections for extinction. 

(iii) Exponent refinement 

d fur,  k, which We must evaluate terms of the form d--~ 

for Slater-type orbitals is given by 

d d 
~-(f.,,,k, = --~ f r v exp ( -2~r ) j , ( S r )dr  

o 

2 f r v+l exp(-2~r) jk (Sr)dr  

which involves a calculation equivalent to the evaluation 
of f,,v, k for products of Slater terms in which the power 
of r is increased by unity. Although this expression is 
not particularly complex it may become compu- 
tationally prohibitive if it is to be re-evaluated at each 
round of refinement for a complex structure with a large 
number of structure factors. In practice, the derivatives 
are nearly constant for the range of ~'s encountered in 
refining scalar terms and a single evaluation is good 
enough. Our normal procedure is to evaluate the f,o,k 
for the extreme values of ~ expected. The refined value 
of ~ is obtained by linear interpolation when the 
populations for the two components are determined. 
The range of the exponents may be narrowed if higher 
precision is required. This is seldom necessary. 
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Electron-Density Studies. 
V. The Electron Density in Melamine (2,4,6-Triamino-s-triazine) with and without 

Exponent Refinement 
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(Received 13 December 1976; accepted 8 August 1977) 

The electron density distribution in melamine has been studied with X-ray diffraction data and neutron 
structural parameters. The at-rest valence density is represented as a set of nuclear-centred multipole 
density functions with Slater-type radial functions. Two series of analyses were compared, the first with 
the radial exponents fixed at the standard molecular values and the second with these exponents as variable 
parameters. Exponent refinement allows a marked improvement in the fit of the model to the data. The 
population coefficients of the multipole terms are better defined when the exponents are optimized. On 
chemically similar atoms the populations of the monopole terms are inversely related to the exponents. The 
carbon atom parameters agree to high precision. Exponents for the ring and amine nitrogens differ and 
small differences within each set are related to the hydrogen-bond and packing environment. The exponents 
and electron density near the nucleus are relatively low for hydrogens involved in hydrogen bonding. 
The most significant deformation functions in the multipole expansion have a symmetry compatible with 
nearest-neighbour geometry. Differences between populations are related to distortions from the idealized 
geometry or to hydrogen-bonding interactions. The inclusion of a hydrogen dipole deformation term with 
a large exponent results in internally consistent populations which are correlated with N-H stretching 
amplitudes in the structure. This suggests that the convolution approximation is invalid at this level of 
structure refinement. 

Introduction 

The free molecule of 2-4-6-triamino-s-triazine (mela- 
mine) has (5m2 symmetry.  Each of the carbon and 
nitrogens has mm2 symmetry and the hydrogen atoms 
have symmetry m. In the crystal structure, which was 
first studied with X-ray data by Hughes (1941), there is 
one molecule in the asymmetric unit. The structure has 
since been more accurately determined with both X-ray 
and neutron data, by Varghese, O'Connell  & Maslen 
(1977). A diagram of the structure is given in Fig. 1. 

The unit cell is roughly equi-dimensional. The lack 
of  a short cell dimension is a considerable advantage 
for charge-density analysis. In each principal direction 
there are points close to the origin of reciprocal space, 
where the contribution of the valence-electron density 
to the scattering is maximal. The parameters which 
determine the charge density can be determined to far 
higher accuracy than those for a smaller structure with 
data  of comparable quality. 

The symmetry of the free molecule is expected to 
persist approximately in the crystal. At  this level of 
approximation the carbon and nitrogen atoms in the 
structure are equivalent in threes and the hydrogen 
atoms in sixes. This provides an internal check on the 
validity of the results. 

::":.:. ............ ~"I-(4)+'~+ C(1) .N(8) . ~ :  N(6) " - 

H(4) " . ,< H(4) 

Fig. 1. Diagram of the melamine structure based on the neutron 
parameters of Varghese, O'Connell & Maslen (1977). 


